Haoyu Shen

■ haoyus@andrew.cmu.edu 412-566-3821 401 Shady Ave, Pittsburgh, PA haoyus haoyushen

EDUCATION

• Carnegie Mellon University

Aug 2023 – May 2025

Master of Science in Mechanical Engineering - Research; GPA: 4.00/4.00

Pittsburgh, PA

o Coursework: Advanced Robotics, Computer Vision, Machine Learning, Autonomous Vehicles, Optimal Control

Southern University of Science and Technology

Aug 2019 – June 2023

Bachelor of Engineering in Robotics Engineering; GPA: 3.77/4.00

Shenzhen, China

o Coursework: Robotics, Artificial Intelligence, Control Theory, Mechanical Design, Mathematical Logic

TECHNICAL SKILLS

- Languages: C/C++, Python, Java, Shell, Julia, Matlab, CUDA, LATEX
- Robotics: Robot Kinematics & Dynamics, SLAM, Path Planning, BLDC Motor Motion Control
- ML Frameworks & Libraries: TensorFlow, PyTorch, OpenCV, NumPy, Scikit-Learn, Issac Gym
- Technologies & Tools: Ubuntu, WSL, Git, Docker, ROS & ROS2, Jupyter, Vim
- Mechanical Design & Manufacture: CAD, SolidWorks, 3D Printing, Laser Cutting, Machining

EXPERIENCE

• CMU CERLAB | UAV Group

Oct 2023 – Present

Research Assistant - Advisor: Prof. Kenji Shimada

Pittsburgh, PA

- Systems Development: Developed a light-weight(2.5kg) quadcopter with onboard computer, 3D LiDAR and RGB-D camera for dynamic obstacle detection and tracking.
- Obstacle Detection: Developed a LiDAR-Visual detector based on DBSCAN clustering, capable of effectively detecting dynamic obstacles within a 10m range at 30 Hz. The system leverages sensor fusion for enhanced accuracy and real-time performance.
- Obstacle Tracking: Developed a robust and efficient obstacle-matching algorithm utilizing point cloud geometric features. Integrated a Kalman Filter for obstacle motion estimation, enabling robust dynamic obstacle tracking.
- **SLAM:** Deployed a robust and efficient **LiDAR** Inertial Odometry on UAV and achieved stable indoor and outdoor environment localization. Applied backpropagation with the flight controller IMU to achieve **30Hz** odometry.

PROJECTS

• 3D Vision Rendering (CMU 16825)| PyTorch, CUDA

Jan 2025 – May 2025

 $Software\ Engineer\ -\ Advisor:\ Prof.\ Shubham\ Tulsiani$

Pittsburgh, PA

- 3D View Generation: Generated textured, multi-angle 3D views from object models using PyTorch3D.
- Neural Rendering: Developed a differentiable pipeline implementing neural volume/surface rendering (NeRF, VolSDF) for improved visualization.
- Gaussian Splatting & Diffusion: Integrated a 3D Gaussian splatting pipeline with SDS-based diffusion optimization to refine image and mesh quality in custom scenes.
- **Point Cloud Processing:** Built a PointNet-based model for efficient point cloud classification and segmentation with enhanced local feature integration.

• Autonomous Obstacle Avoidance UAV (CMU 16745) | MPC, OSQP

Jan 2024 – May 2024

Software Engineer - Advisor: Prof. Zachary Manchester

Pittsburgh, PA

- MPC Formulation: Minimized the reference tracking error and control effort, subject to quadrotor state, dynamic constraint, and obstacle constraint.
- Cost Optimization: Applied the ellipsoid obstacle constraint for distance calculation and decreased the computational cost.

• Battlecity Remastered (CMU 24780) | C++, OpenGL

Sep 2023 – Dec 2023

Software Engineer - Advisor: Dr. Soji Yamakawa

Pittsburgh, PA

- Software Development: Built 4 kinds of tank modules with accessible interfaces and various features based on C++ and OpenGL.
- Vehicle Control in Simulation (CMU 24677) | Python, Webots

Sep 2023 – Dec 2023

Software Engineer - Advisor: Prof. Ding Zhao

Pittsburgh, PA

• Modern Control: Designed a discrete-time infinite-horizon LQR controller to guide a vehicle in tracking a loop trajectory, achieving a maximum tracking error of **6.59m** and an average tracking error of **0.44m**.